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A new representation of the electromagnetic field tensor has been found. In this
representation it is shown that an intimate relationship exists between electro-
magnetism and spin; the duality rotation of the “already unified theory” is
shown to coincide with the Touschek—Nishijima transformation of the theory of
leptons. A nomnlinear spinor equation equivalent to Maxwell’s equations is
deduced.

1. INTRODUCTION

In this paper a new spinor representation of Maxwell’s equations is
deduced. Spinor representation of Maxwell’s equations has already been
given by several authors (Laporte and Uhlenbeck, 1931; Oppenheimer,
1931; von Moliére, 1949; Von Schubert, 1949; Ohmura, 1956; Good, 1957;
Moses, 1958, 1959). However the present one differs completely from all
the previous ones. The present representation shows a relationship between
electromagnetic field and the spin of relativistic quantum mechanics, and
moreover the duality rotation of Rainich (1925) and Misner and Wheeler
(1957) is naturally identified with the Touschek (1957) and Nishijima
(1957) transformation of the theory of leptons. These results indicate the
possibility of an intimate correspondence between electromagnetism and
relativistic quantum mechanics. This aspect of the problem will be investi-
gated in detail in forthcoming papers. It also appears of interest that while
the present representation of Maxwell’s equations quadratically involves a
spinor, typical of the electromagnetic field, it has been possible to deduce a
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single equation for such a spinor which is nonlinear and completely
equivalent to Maxwell’s equations.

2. A SPINOR REPRESENTATION OF MAXWELL’S
EQUATIONS

The tensor form of Maxwell’s equations is well known. Once we
introduce the electromagnetic field tensor F,, as follows,

F,=—-F,=4,,-4,, 2.1
Maxwell’s equations read?

¥, =j" 22)
*F¥,, =.0 (2.3)
where the covariant and contravariant components are related as follows:
F* =y F,, (2.4)

*F* is the dual of F* defined by
g N (2.5)
with £*°" the Ricci pseudotensor with entry +1 if the parity of the
permutation pror of the indices 0,1,2,3 is even, and —1 if odd, and entry

zero if two or more indices are equal, and with n* the Minkowski metric
tensor given by

1 0 0 0
w_|0 =1 0 0 —0— 5
"=lo o -1 ol wr=0-3 (2.6)
0 0 0 -1

It is well known (Messiah, 1966b, p. 908) that for any set of Dirac
matrices y which obey the anticommutation relations

YR Yy =2m" 2.7)

2Hereafter we shall use the Einstein sum convention under which the sum is understood when
two indices are repeated, and a comma followed by an index indicates the operation of
partial derivative with respect to the variable with that index.
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any spinor ¥ with four complex components is such that the two-indices
system

FP = 1¥ylhyhy (2.8)

transforms as an antisymmetric real tensor of rank 2.
Here we have indicated by y!*y*! the following:

Y =3[ vhy ] =20y = v™Y") (2.9)
and by ¥ the Dirac conjugate of the spinor ¥, namely,
¥ =yty0 (2.10)

where ¥ is the Hermitian conjugate of the spinor ¥.

Our objective is to demonstrate that any electromagnetic field tensor
is susceptible of a representation (2.8). In the sense that for any electro-
magnetic field tensor F* there exists at least a spinor ¥ such that equation
(2.8) holds. In doing this we will use a theorem found by Rainich (1925)
and revived by Misner and Wheeler (1957).

This theorem states that at any point of the four-dimensional
Minkowski space any nonnull electromagnetic field can be reduced to an
extremal field by a Lorentz transformation and a duality rotation.

Misner and Wheeler call an extremal field, a field for which the
magnetic field H is zero and the electric field E is parallel to the x axis.

While the Lorentz transformation is quite well known, the duality
rotation is not. It is, however, readily defined as the operation which brings
any antisymmetric tensor F* in a double-index system F* by means of
the operation

F¥=F"cosa+*F*sina (2.11)

The real parameter « is called by Misner and Wheeler the “complexion” of
the field F* in the given point. Once the proof of the validity of the
representation (2.8) for any nonnull field F* will be given, then from the
following identity

€ Mo Yo YP 1= 2y Py liy) (2.12)
with

,Y5= ,YO,YI,YZ,Y3 (2.13)
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and hence
2
(=1,
and
,YST - _ Y5

where one uses the common representation of the y matrices

(1 0 0 0 0 0 0 1
SRR IS R
0o 0 o0 -1 -1 0 0
(0 0 0 —i 001 0
SHEE REER S
i 00 0 01 0 0
with
(=1 (¥)=-1 (k=123
one has

* %EYSY["‘YV]‘I'
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(2.14)

(2.15)

(2.16)

(2.17)

(2.18)

On the other hand the matrices (i/2)y!*y*! are nothing but the matrices of
the matrix representation of the spin operator §* (Messiah, 1966b, p. 905)

S = % Y[#Yv}
and equivalently one has
FP=¥SP¥
*FP =Ty S
And Maxwell’s equations (2.2) and (2.3) read
(¥S»¥),, ="

(¥y°s»¥), =0
i1

(2.19)

(2.20)

(2.21)

(2.22)

(2.23)
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The energy-momentum tensor 7! is readily calculated in the spinor repre-
sentation. In fact the familiar definition

Ti= FI°F,,— L8}F7F,
when is written in the representation (2.20) becomes

T =(¥SH¥)(¥S,,¥) - ;84T S*E)(¥S,,¥)
which by means of the two identities (A.8) and (A.10) gives

Th=1 { 8;[(@1/)% (%S\If)z] ~ 2Ty ) (¥, ¥) 2Ty wf)(%yy&l’)}

(2.24)
_ — 2
ATy = 5 { (T ¥)+ (Ty°e)’) (2.25)
For a null field one therefore has
T TF=0 (2.26)
if and only if one has the two equations
T =0 (2.27)
Yy ¥ =0 (2.28)

3. LORENTZ TRANSFORMATION

Let us consider an antisymmetric tensor F* of the form (2.8), i.e.,
FW — é—‘f’y“‘y"]‘l'

The transformation properties of the spinor ¥ under a Lorentz transforma-
tion are deduced by following Messiah (1966b, p. 904) quite thoroughly.

Since one has the anticommutation relations (2.7), we can write (2.8)
as follows:

FP =iyl ¥ (pp) (3.1)
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Under a Lorentz transformation §, F* transforms in F* according to

Fw=Qrr For (3.2)
i.e., from (3.1)
Fir = iW34° % (p#v) (3.3)
with
7=y’ (34)

But there exists a matrix A such that

Fr=A"yEA (3.5)
with the property

At=y0A"10 (3.6)
or equivalently

AtyO=+A"" 3.7

so that equation (3.3), by means of definition (2.10) becomes
F® = iUty 0907 & = i WA Ty Oy iy P AT = y iy " (3.8)
where we have put
W =AY (3.9)
and equation (3.9) gives the transformation law for a spinor ¥ when the

antisymmetric tensor (2.8) undergoes a Lorentz transformation.

4. THE RAINICH-MISNER-WHEELER DUALITY
ROTATION AND THE TOUSCHECK-NISHIJIMA
TRANSFORMATION

The effect of a duality transformation (2.11) on the spinor ¥ when an
antisymmetric tensor (2.8) undergoes such a transformation is easily de-
termined. By means of equation (2.18) the duality transformation (2.11)
applied to the tensor (2.8) gives

FP=%(cosa+ v sina)S*™V, (4.1)
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and since equation (2.14) holds, we can write

e¥*=cosa+v’sina 4.2)
which permits one to write equation (4.1) as follows:

Fr=Yeregwy (4.3)

It is easily shown that there exists a unitary matrix A such that
v% 75"‘7 by ? = ATy Oy by VA pFEr (4.4)
Since y° anticommutes with all v, i.e.,

Yyr+yhy =0 (4.5)
by putting
A=a+by’ (4.6)

with a and b two complex numbers, we have, for the anti-Hermitianity of
v® given by (2.15),

AT=g*— p*y5 (4.7)

By substituting into (4.4) for the anticommutation relation (4.2) and for the
properties (2.17) and (4.2) one has

cosa+ vy sina=|a|*— |b|*+ (a*b+ ab*)y’
which gives the system
|a]*—|b|*=cosa
a*b+ab*=sina (4.8)

By assuming 2 and b complex, the system (45) is a system of two equations

in four unknowns. However, it is easily shown that it admits a solution

with a and b real. In fact in this hypothesis, the system (4.8) becomes
a—b=cosa

2ab=sina
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which admits the solution

o a
a=cos—
2
[54
b=sin—
2

in correspondence of which equation (4.3) gives

o

A=cos >

.
+7y° sin3 = eves/? (4.9)
We can therefore conclude that if an antisymmetric tensor in the form
(2.8) undergoes a duality rotation with complexion « then the correspond-
ing spinor ¥ undergoes a transformation, we call “spinor duality rotation,”
expressed by

VeV 2y ‘ (4.10)

The transformation (4.10) was introduced in the theory of leptons by
Touschek (1957) and in the same time by Nishijima (1957).

The unitary character of the spinor duality rotation transformation is
readily seen once the anti-Hermitian character of the matrix y° is taken
into consideration, because, in fact, one has, for

A=er™
At=¢ 7

hence the unitary property.

5. THE ELECTROMAGNETIC FIELD

The representability of a nonnull eleciromagnetic field in the spinor
form (2.8) will be now immediately shown once it will be shown for an
extremal field.

In fact, if for the extremal field F§” there exists an extremal spinor ¥,
such that (2.8) holds, i.e.,

I —
Ef =5 oy 'y, (5.1)

then for the Rainich—Misner—Wheeler theorem and for what we have
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demonstrated above, we have that any electromagnetic field F* with
complexion a can be written

Fr = é%lﬂy"qu (5.2)
with
V=N, (5.3)

In order to demonstrate the existence of a spinor ¥, such that the
representation (5.1) for an extremal field is valid, it is convenient to use a
different representation of the Dirac matrices.

Since /y' and iy%!y? are two Hermitian, commuting matrices, accord-
ing to the well-known theorem which states that two commuting Hermitian
matrices can be simultaneously diagonalized with the aid of the same
unitary transformation, there will be a unitary matrix U such that both
Uiy'UT and Uiy%y*UT are diagonal.

In the Dirac representation (2.16), both yy? and y%'y? are diagonal,
and so by taking

U= —\15 (1-v?) (54)
which is clearly unitary, i.e.,
Uut=UU=1 (5.5)
one has
Uy'UT=7y'? ' (5.6)
Ury'y*UT=v%Y? (5.7)

On the other hand since the new matrices y* defined by

y¥#=UyU? (5.8)

satisfy the same anticommutation relations (2.7), we can assume, without
loss of generality, the new representation (5.7) for showing the existence of
a spinor ‘I'O, such that (5.1) is satisfied.
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By indicating £* (pu=0-3) the components of the spinor ‘ilo in this
representation, equation (5.1) explicitly reads

po—pi=Fo’+ Fy! (5.9)
pop1 c08(8, — ) = — 2(F3°+ FF) (5.10)
p3—p3=Fg' + Fg' (5.11)
p,03c0s(8; — 8,) =3 (Fg°+ F§?) (5.12)
000, €0S(8, — 8,) + p,pscos(8,— 8,) = Fy! (5.13)
o3 €0s(8; — B,) — p,p,cos(8,— 8,) = Fg* (5.14)
Here, we have put
gh=p,e  (1=0-3) (5.15)

On the other hand, F§” is the extremal field

0 1 2 3

0 0 E 0 O
F'=1 |-E 0 0 0 (5.16)

2 0 0 0 O

3 0 0 0 O

and the system (5.9)—(5.14) reads

Po—pi=E (5.17)
pop1 c0s(8; — ) =0 (5.18)
p3—p3=E (5.19)
p2p3c08(0;—6,)=0 (5:20)
pop; €0s(8,— o) + pyp;cos(8;—6,) =0 (521)

pop3c0s(8;— o) — pyp, cos(8,— 6,)=0 (522)
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If £ >0, we can put

po=VE coshf (5.23)
p,=VE sinh 8 (5.24)
p,=VE coshy (5.25)
p;=VE sinhy (5.26)

and the equations (5.17) and (5.19) are satisfied while the remaining
equations become

sinh28cos(8, — 8,) =0 (5.27)
sinh 2y cos(#,—8,)=0 (5.28)
cosh B coshy cos(f, — ;) +sinh Bsinhy cos(#;— 8,) =0 (5.29)
cosh Bsinhy cos(f; — 8,) — sinh 8 cosh y cos(8, — 8,) =0 (5.30)

A simple algebraic analysis of this system, which we omit for sake of
simplicity, leads, within a phase factor, to the following solution:

coshé

isinh@ VE 5
sicoshf (5.31)
esinh g

>

0+

Here \ifo + indicates the spinor solution of equation (5.1) corresponding to
positive values of the extremal field, E, 8 is an arbitrary real parameter,
and ¢ can assume values +1 and — 1.

The solution ‘i’o_ of equation (5.1) for negative values of the extremal
field is readily found, since the transformation

[Zr=d (5.32)



110 Campolattaro

reduces the case £ <0 to the previous one, so that one has

isinh# —sinhé
$ | coshd |\/—F _| icoshf 7 _
==\ rsinh6 cisiond | VE (5:33)
eicosh@ —ecoshd

The general solution of (5.1) therefore reads as follows:
Vo=1(1+sgnE)¥,, +(1—sgnE)¥,_ (5.34)
Here sgn x is the step function defined by

+1 for x>0 (5.35)

Sgnx:{ ~1  forx<0

The solution ¥, of the system (5.1) in the Dirac representation is im-
mediately found by inverting the transformation (5.8), and one has

V= Ut = —(1-y)¥, (5.36)

The solution (5.36) is susceptible to a simpler representation. First we
notice that by introducing the angle y defined by

= 1_——s4g~nE - (5.37)
(5.34) reads
Vo =cosy¥,, +siny¥,_ (5.38)
and since one readily has also
@0_ = Y273@0+ =- i"x‘i’0+ (5.39)

equation (5.34) becomes

¥, = (cosy —io siny)¥,, = exp[ io (sgnE — l)g ]@M (5.40)

which shows that the spinor ¥, is obtained by rotating the spinor ¥,
about the axis Ox by an angle (sgn £ — )7 /4.
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The spinor \i’o + also can be written in a simpler way by noticing that
one has

coshé coshf 0 0 esinhd ][ 1

lSlnh0 _ O COSh0 Esinh0 0 0 (5.41)
eicosh® 0 esinhf® cosh@ 0 &i

esinh @ esinh @ 0 0 coshd | O

or equivalently,

coshé 1
sinh & 0,1 0
= hed + h .
ei cosh (coshed + y%'sinhef) o (5.42)
esinh @ 0

But one has (Messiah, 1966b, p. 906)
coshef+ y%!sinhef = A*(—ef) = ¢~ % (543)
with
y=Bfa and y'=8 (5.44)
and (5.41) and (5.42) show that the spinor ¥, is obtained by the spinor

1

el
0

by a special Lorentz transformation with velocity v=tanh(—2¢f) directed
along the x axis (Messiah, 1966b, p. 906). The solution (5.36) can therefore
be written as follows:

1
E 1/2 ) _ 3
‘I’():(?) (1__Y2)elax(sgnE 1)77/2€ a,ed g (5-45)
0

The existence of a solution of (5.1) for an extremal field we have
constructed, implies, through equation (5.3), the existence of a solution of
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(5.2), which then reads as follows:
1/2 1
\I’=(§) eysa/ZA(l__YZ)eiox(sgnE—l)vr/Ze—axel) 0 (546)
&
0

We can therefore conclude that for any nonnull electromagnetic field
F* there exists a spinor ¥ such that
i

FW = @Y[uyvlq,

0o

6. THE SPINOR FOR THE ZERO FIELD

While to a zero spinor corresponds a zero field, the reverse is not true.
It is easily seen, for example, that the eigenvectors of y> do indeed lead to
a zero field. In fact, if ¥ is such that

Y =ci¥ (6.1
with e= * 1, then
Yy = —ei¥ (6.2)
and one has
Wy Sylty W = — i T yley (6.3)

On the other hand, since y° anticommutes with the y’s one also has
Tyylhy e =wyleyly (64)
and equation (6.1) gives
Yy iy W = e T yliy (6.5)
and its comparison with equation (6.3) leads to
Pylty iy =0 (6.6)

It is readily seen that the eigenvectors of y°> give the whole set of solutions
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for the zero field. In fact, the system (5.9)—(5.14) for F* =0 gives

Po=p
Pr=pP3

picos(8,—8,)=0

picos(6;,—8,)=0 (6.7)
poP2[ cos(B,—8,) +cos(8;—6,) ] =0
Pos[ cos(f;— 8,) — cos(6,—6,) ] =0

which admits, beside the trivial solution, the following nontrivial solutions:

0 1 3
0 €l ei§

§ ap 3 ol . (6.8)
€l 0 —ein|

with £ and 7 arbitrary complex parameters and e= + 1. For having the
zero-field solutions in the Dirac representation one has only to apply to the
spinors (6.8) the transformation (5.4), which gives the following:

—¢ 1 £+en o
—i ; i(e§—m) | _|;

¢ L 52’, eren) |~ ;; (6.9)
€l i ei(e£—1) elr

where in the third one £+ ¢en and e§—% have been replaced with o and .
And it is readily seen that the solutions (6.9) are all eigenvectors of y>
corresponding to the eigenvalues &i.

7. THE SPINOR ¥ AND THE CHARGE CONJUGATION
OPERATION

A property of the spinor ¥ which enters in the present spinor
representation of the electromagnetic field is that it cannot be an eigenstate
of the charge conjugation operator K. (Messiah, 1966b, p. 916) with
charge parity +1, or in other words it cannot be a neutrettor (Corson,
1955).
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In order to demonstrate this property we can show it for the extremal
field and then show that the property continues to hold after a
Touschek—Nishijima transformation and a Lorentz transformation.

For the extremal field, we can assume, for sake of simplicity, that it is
positive. In this hypothesis, the spinor ¥ reduces to ‘ifo+ given by (5.31).

In the Dirac representation one has, from equation (5.36),

A

Yo, = ——(1-v)¥,, (7.1)

I
V2
and since in the same representation one also has

V. =yK¥,=y>¥¥ (7.2)

(7.1) gives, by using equation (5.33),

1 A 1 A
Yorc= W(l + ) ¥ c=— T/*;(l —yA)¥E, (7.3)

Therefore the condition

Yo=Y, (7.4)
is equivalent to the other

‘i'o+ = @3+

which cannot be satisfied since, from equation (5.31), it would require the
incompatible condition

coshf=sinhfd=0

and similarly for ¥,_.

For what concerns the Touschek—Nishijima transformation it is read-
ily seen that it commutes with the charge conjugation operator because the
operator K commutes with y* then with y°. It is already known that the
charge conjugation operator commutes with Lorentz transformations and
so for the general spinor ¥ given by (5.3) one has

K ¥ =e"/?AKY¥,

The spinor ¥ is then a self-charge conjugate if and only if ¥, itself is such,
and that is not possible, as has been shown above.
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8. THE SPINOR EQUATION EQUIVALENT TO MAXWELL’S
EQUATIONS

Maxwell’s equations (2.22) and (2.23) will be now reduced to a single
equation for the spinor ¥. Since one has equation (2.19), by using the
anticommutation relations (2.7), equations (2.22) and (2.23) read as
follows:

\P’yY"'Yp‘I,—‘I,Yuyy\P’v=\I,’F\I/—‘I’\I”F—2ijM (81)
becomes

¥,y Y =¥y, YT, = — (¥, Y Y -¥y°Y, ) (82)

which by putting

YA, =@ (8.3)
By, ¥— ¥y, 0=V, ¥—V¥, —2i, (8:4)
Oy, ¥ — ¥y, v’ 0=~ (Vv V- Ty°T,) (8.5)

Equations (8.4) and (8.5) can be solved for the spinor ® by expanding ®
into the four independent eigenvectors of the matrix y> corresponding to
its eigenvalues =/, namely,

1 1 0 0
0 0 1 1
Xo= 1 ’ X1~ —~1 ’ X2= 0 ’ X3 0 (86)
0 0 1 -1
with
vx=(=1)"ix, (8.7)
By putting
O=P"x, (8.8)
since one has the orthogonality property:
XuXo =28, (8.9)

where %, is the transposed of X.» one has the components of any spinor ®
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in the representation x, as follows:
P, =,%2 (8.10)

By using the representation (8.8), and by remembering equation (8.7),
equations (8.4) and (8.5) read

Xy, ¥ — @y, x, =V, ¥Y-¥¥, -2/,  (8.11)
(—D)TX Y, Y+ (- 1Y OVy,x, =i(V, Y’ -¥y°T, ) (812)

By adding and subtracting the last two equations one has

— o+l —iy+1

qDO'ioyﬂ\I’ - <I>1$yﬁx, + @2*5(2}%‘1/ - CI>3@}'”X3 =Y,, 3 v—-¥ 3

Y.~

(8.13)

.5 .5
e - el Wl =l
BTy, %o~ OV XY, ¥+ OF Yo~ Oy, ¥ =T, o VT L 4,

(8.14)

Since, as is readily seen, equation (8.14) is nothing but the complex
conjugate of equation (8.13) we have to consider only this latter equation,
which by putting

— 1+iy5 —1+iy5 .
r,=v, 5 -V 5 ¥, i, (8.15)
reads
%oy, ¥ — @' ¥y, X, + PNy, ¥ — ¥y, x;=T, (8.16)

If #* are the components of the spinor ¥ in the representation of the x’s,
namely,

¥=n"y, (8.17)
i.e., according to equation (8.10).

0" =3%¥ (8.18)
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Straightforward calculation of the coefficients of (8.16) gives the following:
XoYo¥ =27, X1Yo¥ =27, y(zYoi’ =2, X3Yo¥ =2m3

XoY1 ¥ =—2n,, X171 ¥ =2n,, X211 = —2n,, X37 ¥ =2n,
(8.19)

XoY12¥ =2im,, X172 ¥ =—2in;, X2v,¥=— 2imy, X372, ¥ =2in,

Xovs¥ = —2n,, X1Ys¥ =2n,, X213 =21y, X3Ys¥=—2m;

the system (8.16) explicitly reads

M9 —nf m =[] [T,
—n, -t —my —nt|| @ T
2 .712 1?1 ."70 'TIL | = 1 (8.20)
m, —M3 — My mr||® T,
e —nf om )| ® ) [T

The latter system can be simplified by multiplying it on the left by the
matrix A given by

0

-0 ‘3 -1 (8.21)
]

and it reduces to

AK=AT (8.22)
with

(8.23)
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and
m 0 0 -
0 ¥ o= 0
) L (8.24)
0 = Mo Y
mn 0 0 nf
It is readily seen that the matrix 4 is nonsingular. In fact,
det A = (ngn} +nm})” (8.25)
and by using equation (8.18) one straightforwardly has
ot + i =1(TY +i¥y V) (8.26)

So detA would be zero if and only if ¥¥ =0 and ¥y>¥ =0, which are the
conditions (2.27) and (2.28) for the null field. We are in the hypothesis of a
nonnull field. 4 ! does, therefore, exist and it is immediately found to be

0y 0 0 n3
0 0
L P — To T (8.27)
NN + M3 0 -7 m O
p) 0 0 m
and (8.22) gives
K=A4"'AT (8.28)

By taking in account the contravariant representation of (8.19) equation
(8.28) explicitly reads

Ty%,  Ty'x, ¥y ¥
B 1 —Xo7°¥ XYV —x¥’'¥  —Xov’¥
D8t mmd) | Ty, Fy'xs Tk T
- 7—(270‘1' —X2Y v - )_(2Y2‘I’ - >—(273‘I’
' (8.29)

T

On the other hand the vector (8.15) can be written

T,=R,+I, (8.30)
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with
R,=1(¥.,. v’ ¥-¥iy’¥, )= ~Im(¥, y"¥) (8.31)
and
= 3L, Y-V, ) —ij,=i[In(¥,,¥) -, ] (8.32)
where Im is the imaginary part, and for (8.23) the system (8.29) reads

0* _ 1

= SCnm + mgny LA RV Y] (8.33)
1_ -1

- MR+ yH )W 8.34
8(mont + nant )[XO(Y kY)Y (®.34)

. 1
O'=— [ %.(y"R,— yM )V |* 8.35)
8(nont + mym3) [ 3( . M) . (
-1
s FR + vy W 8.36
X2\Y Y .

8("70")1 + 1% ) l: 2( # p) J ( )

On the other hand since one clearly has
X1 = Xo» Xo=X1> X3=X2 X2=Xs (8.37)

and (8.7) holds, the system (8.33)—(8.36) becomes

4(nony +712"73)*q)0= —%5(07“(1'}'5R#+IM)‘I' (8.38)
A(ngnt +mym3)@' = — 3%,y (iv’R, + 1) ¥ (8.39)
A(ngnt +mym3)* @ = — 3%, v" (iR, + [,)¥ (8.40)
A mgnt + 0@ = — 1%y (iv°R, + 1) ¥ (8.41)

By using (8.26) it can be easily shown that the left sides of the system
(8.38)—(8.41) are nothing but the x components of the spinor C® with the
matrix C given by

C=V¥+y¥y°¥ (8.42)
and one has

&= C y*(iv’R,+1,)¥ (8.43)



120 Campolattaro

The matrix C ~! is readily calculated to be the following:

Cc-l= T — Yy (8.44)
() +(Ty*r)

Equations (8.31), (8.32) and (8.44) permit one to write explicitly the spinor
® given by (8.43) as follows:

¥+ ys\_I;yS\I/
(T¥) +(Ty°¥)

®=— iy {Im(¥,,¥) -y’ Im(¥,,y°¥)—j,} ¥

(8.45)

It is just enough to remember equation (8.3) for obtaining the spinor
equation equivalent to the system of Maxwell’s equations, i.e.,

R 2 Bk et 4 — -
v = it LIS (1T, ) (T ) ), )

(T¥) +(Ty°¥)

(8.46)

By introducing the angle « defined by

v

— Ej ~Ti; = cosa (8.47)

(@) +(T7°¥) ]

I ~5

Ty =sina (8.48)

[(-\I‘;\I’)Z + (@YS‘I’)Z] 1/2
and by recalling equation (3.8), equation (8.46) can be written as follows:

5
e’”

(@9 +@Frey]”

Y, = —iy* {Im(g,#?)—YSIm(W,Mys\P) _j#};lf

(8.49)

This angle a enters therefore in the spinor Maxwell equation through a
duality rotation. The meaning of this angle will appear clearly in the next
section.
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9. THE MEANING OF THE ANGLE «

It will be now shown that the angle & we have just encountered in the
spinor Maxwell equation of the previous section is nothing but the com-
plexion of the electromagnetic field.

From equation (8.47) and (8.48) one has

TS5
tana= 2% (9.1)
V¥
which gives
V)T ¥
anzam 20 _ (FO(EYY) (9.2)

e | P (T

By using the identities (A.10) and (A.11) together with equations (2.20) and
(2.21), (9.2) reads

F_*F®
tan2a= :F“” (9.3)

W

which coincides with the Misner-Wheeler equation (2.24) (Misner and
Wheeler, 1957), when the angle a coincides with the complexion of the
electromagnetic field F,.

10. CONCLUSIONS
In the previous pages, it has been shown that for any given electro-

magnetic field its electromagnetic field tensor F® can be written as
follows:

FW =Y SH¥ (2.20)

where ¥ is a spinor, ¥ its Dirac conjugate, and S* the spin operator given
by

SH= 2 yliy (2.19)

the y’s being the Dirac matrices. In this representation Maxwell’s equa-
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tions read as follows:
(¥SH¥),, =" 2.22)
(¥y°s#¥),, =0 (2.23)

It has been shown, moreover, that the Rainich—-Misner—Wheeler duality
rotation of the ‘“already unified theory” is nothing but the
Touschek—Nishijima transformation of the theory of leptons. The two
equations (2.22) and (2.23), quadratic in ¥, have been reduced to a single
nonlinear equation for ¥ which is the following:

e

e’

[@\If)z +(Ty')’

Y, = —iy¥ {Im(@,“\P)—ySIm(W,“yS\I') _j#}‘P

:]1/2

(8.49)

and the parameter o« has been identified with the “complexions” of the
electromagnetic field. The present paper is the first of a series in which the
properties of the spinor representation of Maxwell’s equations are explored
and their implications with relativistic quantum mechanics analyzed in
detail.

APPENDIX A: PROOF OF SOME IDENTITIES USED IN THE
TEXT

In this Appendix are deduced some identities which are used in the
text. The first one is the following:

(Dy*¥)(Dy, %) =(B¥)’ +(Dy°¥)’ (A.1)

for any two spinors ® and V. Its demonstration is, however, omitted since
it is only a tedious exercise. In particular for ®=¥ one has

(Fy*¥)(¥y,%)=(F¥) +(Ty*¥) (A2)
In what follows is used the following important identity:

($,y"\1f)(627u\11)=(EI\P)(EZ\I’H(E),ysxp)(@y5\lf) (A3)
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for any three spinors ®,, ®,, and ¥, and which generalizes the identity
(A.]). In fact, by putting

P=0,+® (A4)
1 2

the identity (A.1) gives

[(51 +62)y"‘1’] [(6, +62)y”\1’]

= (D7 *¥)(D,7, %) +(D,7*¥)(D,7,%) +2(D, v ¥)(Dyy, ¥)
(A5)
It is just enough to use the identify (A.1) on the left side of (A.5) as well as
on the first and second terms of the right side for having the identity (A.3).
In particular, by taking in (A.3)
®,=7°0, =y’ (A.6)
(A.3) gives
(Dy*T)(®y*y,¥)=0 (A7)
Another important identity is the following:
(V5w (TS, ¥) = {84(T) — (Tr)(Fr,¥) ~ (Try 2)(Tr,r°¥) )
(A.8)

which is immediately deduced from (A.3) by remembering (5.7) and the
anticommutation relations (4.5) and by writing (A.3) with the positions

O, =y"¥ and O,=y ¥ (A.9)
From (A.8) and (A.2) one has
(TS#¥)(¥S,¥) =1 {(TF) - (Ty*¥)’)} (A.10)
Similarly one has the other identity

(Ty’S#¥)(¥S,,¥)=(T¥) (T ¥) (A.11)
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Also the following identity holds:
(Fy*¥)(¥S,¥)= é(@f@)(%sy,q/) (A.12)

whose validity is easily shown by adopting the techniques used for the
other identities. Another important identity is the following:

2iIm{(¥,,9)(Tr°¥) - (L,,7°0)(F¥) } = (Ty*¥),,(¥r,7°¥)
(A.13)

whose demonstration is straightforward. In fact, the identity (A.3) with the
positions

o,=Y, (A.14)
0,=y¥ (A.15)
gives
(.7 )( Ty, ¥)=(T, 1)(Fr*¥) - (T, ¥)(TY)  (A16)
so that

2iIm{(¥,,¥)(Ty°¥)— (¥, v T)(¥¥)}
= (T, v ¥)(Friy, ¥) - (Fy" 0, )(Fr,7°¥)
= {(¥.,y*¥)+(¥r*¥,)}(¥r,r’¥)  (A1D)

which is the identity (A.13). Moreover since one has the identity (A.7),
(A.13) is equivalent to the other:

2i1m{(¢,,~1/)($y§\p) (¥, 7°¥)FY)} = — (Fy*¥)(¥7,7°¥),,
(A.18)
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APPENDIX B: PROOF OF NONEXISTENCE OF A SPINOR ¥
SUCH THAT ¥*W¥ = j* FOR ANY GIVEN VECTOR ;*

For any given vector j, (p=0-3), suppose there exists a spinor with
components £* such that one has

Vyry = ¢ (B.1)

It is easily shown that the system (B.1) is in general incompatible. By using
the representation (4.7) for the matrices vy, the system (B.1) explicitly reads

&6 TELTEL=)

36t &E GG =)
8- 86 +86L-86L=—1) (B.2)
G684 +E8L86G=)

or equivalently

A*V=J (B.3)
with
go g] 52 53
&, o3 §o
A= .
53 “52 ‘51 —50 (B 4)
§2 “53 50 _51
and
Jo
J1
J= B.S
5, (B5)
J3

The incompatibility of the system (B.2) is readily shown since a straight-
forward evaluation of det4 gives

detA =0 (B.6)

for any arbitrary spinor ¥,
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